SciFinder is brought to you by CAS

To provide the world’s best digital research environment to search, retrieve, analyze and link chemical information.

Researchers around the world have relied on CAS for more than 100 years for the information they need to move their work forward.
The CAS databases are built by scientists around the world

CAplusSM
- Journal articles, patents, and other reputable scientific sources
- More than 10,000 major scientific journals covered
- Patents from more than 60 patent offices
- Coverage back to early 1800s; cited references from 1997-present
- Updated daily with ~3,000 references

CASREACT®
- Single- and multi-step reactions, synthetic preparations
- Extracted from journal articles and patents
- Coverage back to 1840; reaction conditions from 2003-present
- Updated weekly with ~30-50,000 reactions

CAS REGISTRYSM
- Organic and inorganic substances, sequences
- Substances reported in the literature back to 1802
- Updated daily with ~12,000 substances
- Substance information enriched with experimental and predicted property data, including more than 2.8 billion property values, data tags, and spectra

CHEMCATS®
- Chemical source information, including supplier addresses and pricing
- More than 1,000 suppliers
- More than 1,100 chemical catalogs
- Updated when new or revised catalogs are available

MARPAT®
- Markush structures covering organic and organometallic substances in patents
- Coverage 1988-present
- Also 1961-1987 records derived from INPI data
- Updated daily with ~150-200 Markush structures
Only SciFinder gives you essential content and proven results

- If it’s important to you, SciFinder has it
- Be confident that you have the most precise, dependable, and timely information
- Be more productive and creative in your research process
- Trust CAS experts to support your research every step of the way
- Available whenever and wherever you need it
What is known about this area of research?
Candidates help to make the best choice

Research Topic Candidates

<table>
<thead>
<tr>
<th>Research Topic Candidates</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>29 references were found containing "tyrosine kinase inhibitors for treatment of cancer"</td>
<td>29</td>
</tr>
<tr>
<td>closely associated with one another.</td>
<td>2245</td>
</tr>
<tr>
<td>11008 references were found where all of the concepts "tyrosine kinase inhibitors",</td>
<td>11008</td>
</tr>
<tr>
<td>"treatment" and "cancer" were present anywhere in the reference.</td>
<td></td>
</tr>
<tr>
<td>6597 references were found containing the two concepts "tyrosine kinase inhibitors" and</td>
<td>6597</td>
</tr>
<tr>
<td>"treatment" closely associated with one another.</td>
<td></td>
</tr>
<tr>
<td>18498 references were found where the two concepts "tyrosine kinase inhibitors" and</td>
<td>18498</td>
</tr>
<tr>
<td>"treatment" were present anywhere in the reference.</td>
<td></td>
</tr>
<tr>
<td>6693 references were found containing the two concepts "tyrosine kinase inhibitors" and</td>
<td>6693</td>
</tr>
<tr>
<td>"cancer" closely associated with one another.</td>
<td></td>
</tr>
<tr>
<td>16220 references were found where the two concepts "tyrosine kinase inhibitors" and</td>
<td>16220</td>
</tr>
<tr>
<td>"cancer" were present anywhere in the reference.</td>
<td></td>
</tr>
<tr>
<td>399131 references were found containing the two concepts "treatment" and "cancer" closely</td>
<td>399131</td>
</tr>
<tr>
<td>associated with one another.</td>
<td></td>
</tr>
<tr>
<td>933008 references were found where the two concepts "treatment" and "cancer" were present</td>
<td>933008</td>
</tr>
<tr>
<td>anywhere in the reference.</td>
<td></td>
</tr>
<tr>
<td>35512 references were found containing the concept "tyrosine kinase inhibitors".</td>
<td>35512</td>
</tr>
<tr>
<td>7912220 references were found containing the concept "treatment".</td>
<td>7912220</td>
</tr>
<tr>
<td>3160974 references were found containing the concept "cancer".</td>
<td>3160974</td>
</tr>
</tbody>
</table>

Get References
SciFinder is more than search and retrieval

1. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer
 By Fukuoka, Masahiro; Yano, Seiji; Giaccone, Giuseppe; Tamura, Tomohide; Nakagawa, Kazuhiko; Douillard, Jean-Yves; Nishiwaki, Yutaka; Vansteenkiste, Jchan; Kudch, Shinzoh; Rischin, Danny; et al
 From Journal of Clinical Oncology (2003), 21(12), 2237-2246. Language: English, Database: CAPLUS
 The aim was to evaluate the efficacy and tolerability of two doses of gefitinib (Iressa [ZD1839]; AstraZeneca, Wilmington, DE), a novel epidermal growth factor receptor tyrosine kinase inhibitor, in patients with pretreated advanced non-small-cell lung cancer (NSCLC). This was a randomized, double-blind, parallel-group, multicenter phase II trial. Two hundred ten patients with advanced NSCLC who were previously treated with one or two chemotherapy regimens (at least one contg. platinum) were randomized to receive either 250-mg or 500-mg oral doses of gefitinib once daily. Efficacy was simil...

2. ERBB receptors and cancer: the complexity of targeted inhibitors
 By Hynes, Nancy E.; Lane, Heidi A.
 A review. ERBB receptor tyrosine kinases have important roles in human cancer. In particular, the expression or activation of epidermal growth factor receptor and ERBB2 are altered in many epithelial tumors, and clin. studies indicate that they have important roles in tumor etiol. and progression. Accordingly, these receptors have been intensely studied to understand their importance in cancer boll. and as therapeutic targets, and many ERBB inhibitors are now used in the clinic. We will discuss the significance of these receptors as clin. targets, in particular the mol. mechanisms underlying response.
4. Preparation of quinazolinyloxy spiroheterocycles as tyrosine kinase inhibitors.

By: Hmelsbach, Frank; Jung, Birgit; Lotz, Ralf
Assignee: Boehringer Ingelheim International GmbH, Germany

Title comps. [I; R1 = (substituted) Ph, 1-phenethyl; R2 = H, (substituted) alkyl, cycloalkyl, cycloalkylalkyl; R3 = H, (substituted) alkyl, cycloalkyl, cycloalkylalkyl, alkylcarbonyl, cycloalkylcarbonyl, alkylsulfonyl, PhCO, PhSO2, etc.; R4 = H, F, Cl, Br, iodo, OH, alkyl, alkoxy, fluoroalkoxy, cycloalkoxy, tetrahydrofurylalkoxy, tetrahydropyranalkoxy, etc.; A = CO, (substituted) C1-3 alkylene], were prepd. Thus, Me trans-1-(2-aminoethylamino)-4-[4-(3-chloro-2-fluorophenylamino)-7-methoxyquinazolin-6-yloxy]cyclohexanecarboxylate (prepn. given) was stirred with aq. NaOH in MeOH for 3 h to give 57% ant-9-4-(3-chloro-2-fluorophenylamino)-7-methoxyquinazolin-6-yloxy]-1,4-diazaspiro[5,5]undecan-5-one. It inhibited EGFR-dependent proliferation of murine hematopoietic cells with IC50 = 1-4 nM.
SciFinder records are indexed to ensure full retrieval of substances and concepts

Concepts

- **Bronchitis**
 - allergic, treatment; prepn. of quinazolinyloxy spiroheterocycles as tyrosine kinase inhibitors
- **Bronchial disease**
 - Obstructive pulmonary disease
- **Bronchiectasis**
 - treatment; prepn. of quinazolinyloxy spiroheterocycles as tyrosine kinase inhibitors
- **Bronchitis**
 - Sinusitis
 - chronic, treatment; prepn. of quinazolinyloxy spiroheterocycles as tyrosine kinase inhibitors
- **Cholinergic antagonists**
 - H1-antihistamines
 - Dopamine agonists
 - β-Adrenoceptor agonists
 - coadministration; prepn. of quinazolinyloxy spiroheterocycles as tyrosine kinase inhibitors
- **Corticosteroids**
 - coadministration; prepn. of quinazolinyloxy spiroheterocycles as tyrosine kinase inhibitors
 - Therapeutic use; Biological study; Uses

Substances

- **65154-06-5** Platelet activating factor
 - antagonists, coadministration; prepn. of quinazolinyloxy spiroheterocycles as tyrosine kinase inhibitors
 - Biological study, unclassified; Biological study
- **9036-21-9**
 - 73836-78-9 Ltd4
 - 115926-52-8 P13 kinase inhibitors
 - coadministration; prepn. of quinazolinyloxy spiroheterocycles as tyrosine kinase inhibitors
 - Biological study, unclassified; Biological study
- **79079-06-4** Egfr kinase
 - prepn. of quinazolinyloxy spiroheterocycles as tyrosine kinase inhibitors
 - Biological study, unclassified; Biological study
- **1178976-72-1P**
 - prepn. of quinazolinyloxy spiroheterocycles as tyrosine kinase inhibitors
 - Pharmacological activity; Reactant; Synthetic preparation; Therapeutic use; Biological study; Preparation; Uses; Reactant or reagent
Is this substance novel?

Depend on SciFinder to assess the uniqueness of your compound

- The most current and complete collection of disclosed chemical substances covering all areas of chemistry
- Trusted source for claimed, exemplified, and generic substances from patents worldwide
- Alerts of activities of your competitor or research collaborators
Intellectual analysis by CAS experts ensures the most comprehensive substance coverage

Source: WO2008110314
Specific compounds are often not completely identified in the original document.

Compound 34: Diisopropyl azodicarboxylate (DIAD) (1.20 mL, 6.08 mmol) was added to triphenylphosphine (1.60 g, 6.08 mmol) in THF (100 mL) at 0 °C, and was stirred for half an hour during which time the yellow solution became a paste.

Compound 14 (2.58 g, 4.06 mmol) and p-nitrobenzoic acid (0.81 g, 4.87 mmol) were dissolved in THF (50 mL) and added to the paste. The resulted mixture was stirred at ambient temperature overnight. Water (100 mL) was added and the mixture was made slightly basic by adding NaHCO₃ solution followed by extraction with EtOAc (3x50 mL). The combined extracts were washed with brine once and dried over anhydrous Na₂SO₄. The desired product (2.72 g, 87% yield) was isolated by SiO₂ chromatography (Et₂O/hexanes 1:1).

The compound has the following NMR data:
- \(\text{H} _1: 8.30-8.26 (m, 2 \text{H}) \)
- \(\text{H} _2: 8.21-8.16 (m, 2 \text{H}) \)
- \(\text{H} _3: 4.02 (bs, 1 \text{H}) \)
- \(\text{H} _4: 3.90 (bs, 1 \text{H}) \)
- \(\text{H} _5: 2.29-2.19 (m, 1 \text{H}) \)
- \(\text{H} _6: 2.07-1.06 (m, 1 \text{H}) \)
- \(\text{H} _7: 1.69-1.34 (m, 3 \text{H}) \)
- \(\text{H} _8: 0.70 (s, 3 \text{H}) \)

The compound also has the following mass spectra:
- \(m/e: ([M+Na]^{+}) 537 \)
- \(m/e: ([M+K]^{+}) 559 \)
- \(m/e: ([M+Na]^{+}) 537 \)
- \(m/e: ([M+K]^{+}) 559 \)

The isolated compound is a yellow solid. The CAS RN 20376-03-6 is highlighted.
SciFinder has unparalleled capabilities for exact, substructure, similarity, and Markush searching.
What is known about this substance?

If it’s important, SciFinder has it.
SciFinder offers a collection of properties that are valuable in every stage of discovery

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Biological</th>
<th>Structure-related</th>
<th>Spectra</th>
<th>Thermal</th>
</tr>
</thead>
</table>
| • Freely rotatable bonds
• Hydrogen Donors and Receptors
• Intrinsic Solubility (Mass and Molar)
• Koc
• logD
• logP
• Molecular Weight
• pKa
• Vapor Pressure
• Dissociation Constant
• Partition Coefficient | • Bioconcentration Factor
• LC50
• LD50
• NOAEL/LoEL | • Particle Size
• Polar Surface Area
• X-Ray Diffraction Pattern | • Carbon-13 NMR
• Proton NMR
• IR Absorption
• Mass Spectrum | • Boiling Point
• Enthalpy
• Entropy
• Flash Point
• Melting Point |
What is the best way to synthesize this substance?
View experimental procedures directly in SciFinder

Overview

<table>
<thead>
<tr>
<th>Steps/Stages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 R:4-DMAP, S:DMF, 18 h, rt</td>
</tr>
<tr>
<td>2.1 R:AcOK, C:95464-05-4, rt; 12 h, 80°C; 80°C → rt</td>
</tr>
<tr>
<td>3.1 R:HCl, S:Dioxane, S:CH₂Cl₂, 12 h, 40°C; 40°C → rt</td>
</tr>
<tr>
<td>3.2 R:NaHCO₃, S:H₂O, pH 8</td>
</tr>
<tr>
<td>4.1 R:Disodiumcarbonate, C:PdCl₂(PhH)₂, S:H₂O,</td>
</tr>
<tr>
<td>S:(CH₂OMe)₂, rt; 16 h, 87°C</td>
</tr>
<tr>
<td>5.1 R:HCl, S:MeOH, S:Dioxane, S:CH₂Cl₂, 1 h, rt</td>
</tr>
</tbody>
</table>

Notes

4) Suzuki coupling, Reactants: 4, Reagents: 5, Catalysts: 2, Solvents: 6, Steps: 5, Stages: 6, Most stages in any one step: 2

References

Combination of a c-Met antagonist and an aminoheteroaryl compound for the treatment of cancer

By Goetsch, Lilane
From PCT Int. Appl., 2010003992, 14 Jan 2010

Experimental Procedure

Step 1

General Procedure 62: To a solution of 5-bromo-3-[(R)-1-(2,6-dichloro-3-fluoro-phenyl)-ethoxy]-pyridin-2-ylamine (12.83 g, 33.76 mmol) in anhydrous DMF (100 mL) was added di- tert-butyl dicarbonate (21.25 g, 97.35 mmol) and 4-dimethylami[pi]pyridine (0.793 g, 6.49 mmol). The reaction was stirred at ambient temperature for 18 hours under nitrogen. To the mixture was added saturated NaHCO₃ solution (300 mL), and extracted with EtOAc (3×250 mL). The combined extracts were washed with water (5×100 mL), sat. NaHCO₃, and brine, then dried over Na₂SO₄. After filtration, evaporation, and high vacuum drying, di-boc protected 5-bromo-3-[(R)-1-(2,6-dichloro-3-fluoro-phenyl)-ethoxy]-pyridin-2-ylamine was obtained as an off-white foam solid (19.29 g, 100% yield). ¹H NMR (DMSO-d₆, 400 MHz) δ 8.18 (d, 1H), 7.83 (d, 1H), 7.59 (dd, 1H), 7.48 (t, 1H), 6.25 (q, 1H), 1.75 (d, 3H), 1.39 (s, 9H), 1.19 (s, 9H).

Step 2

To a solution of the di-boc protected 5-bromo-3-[(R)-1-(2,6-dichloro-3-fluoro-phenyl)-ethoxy]-pyridin-2-ylamine (19.58 g, 33.76 mmol) in DMSO (68 mL) was added potassium acetate (11.26 g, 114.78 mmol) and bis(pinacolato) diboron (10.29 g, 40.51 mmol). The mixture was degassed and
SciFinder has great content and analysis tools for biologists and physicists.
How do Nobel Prize winners feel about SciFinder?

“I am a big user and don’t see how any researcher could hope to excel without daily, round-the-clock access. The speed and scope of its search power is amazing… In my case, SciFinder enhances my reactivity insights, making it easier to “see” those ill-defined boundaries where important new phenomena are lurking.”

Dr. K. Barry Sharpless
Nobel Laureate
W.M. Keck Professor of Chemistry
Scripps Research Institute

“Being able to rapidly search for important chemical information while an idea is fresh in your mind is almost priceless. CAS databases streamline the investigative process---allowing you to take an idea and rapidly find the important and necessary information before you forget about the idea or it loses its excitement. That really is invaluable.”

Dr. Robert H. Grubbs
Nobel Laureate
Victor and Elizabeth Atkins Professor of Chemistry
California Institute of Technology
The quality, service, and support that CAS offers is unmatched in the industry.

CAS Customer Center
- Support
- Search strategy
- Account services

CAS Learning Solutions
- Training events
- Self-study options
- Learning paths
 - http://learning.cas.org

Trust CAS experts to support your research every step of the way.
Available anywhere you are

http://scifinder.cas.org/mobile

- SciFinder brings you the world’s leading chemical information
- No other chemical or related scientific resource can match SciFinder’s timeliness, quality, and accuracy
- Start your new research project with confidence using SciFinder
- Trust CAS experts to support your research every step of the way